
Software Development Proficiency

Proficiencies
(weight) Below Expectations Meets Expectations

Testing (10) Insufficient automated tests. Automated unit testing code is adequate for
the given project.

Naming (10) Most names used are short and/or
unhelpful.

Modules/functions/variables are clearly
named to reflect their functionality
(self-documenting code).

Data Modelling (10) Program data is stored in individual
variables without using appropriate
data structures to organize it.

Custom classes and common data
structures such as arrays and dictionaries
are appropriately used to organize the
program data.

Functional
Decomposition (10)

The project has few functions or
functions lack a clear, singular
purpose.

Functions have a clear, singular purpose.
Long functions are avoided.

Code Duplication
(10)

The project has frequent instances
of code duplication

Code duplication is generally avoided.

Code Modularity
(10)

The code is barely decomposed into
modules/classes.

The code is for the most part decomposed
into suitable modules/classes with
well-defined responsibilities.

Version Control
(10)

Few commits are made, often
addressing multiple concerns (not
atomic).

Frequents commits are made, each
addressing just one project concern (atomic).

Issue Management
(5)

Issues are not used effectively. Issues are used effectively to organize the
work.

Formatting (5) Contains many long lines of code or
blocks of commented-out code
which should have been deleted.

Code has consistent and appropriate
indenting and spacing that reflects the
logical structure of the code.

Project Structure
(5)

The code consists of a few very large
files containing disparate elements.

The code is comprised of separate,
well-focused files, none of them too large.

Resource
Separation (5)

Literal values are frequently used
directly in the program.

Literal values are typically stored in constant
variables instead of being used directly.

Inline Comments
(5)

Code contains unhelpful inline
comments, or complex code lacks
explanatory inline comments.

Explanatory inline comments are used when
and only when needed to clarify complex
code segments.

Code
Documentation (5)

Modules and functions are in
general not documented.

Most modules and functions are adequately
documented.

1


